THE SIGN OF FOURIER COEFFICIENTS OF HALF-INTEGRAL WEIGHT CUSP FORMS
نویسندگان
چکیده
منابع مشابه
Changes of Fourier Coefficients 6 of Half - Integral Weight Cusp Forms
Let k be a positive integer. Suppose that f is a modular form of weight k + 1/2 on Γ0(4). The Shimura correspondence defined in [12] maps f to a modular form F of integral weight 2k. In addition, if f is an eigenform of the Hecke operator Tk+1/2(p), then F is also an eigenform of the Hecke operators T2k(p) with the same eigenvalue. For more on half-integral weight modular forms, see [12]. Let t...
متن کاملSign Changes of Coefficients of Half Integral Weight Modular Forms
For a half integral weight modular form f we study the signs of the Fourier coefficients a(n). If f is a Hecke eigenform of level N with real Nebentypus character, and t is a fixed square-free positive integer with a(t) 6= 0, we show that for all but finitely many primes p the sequence (a(tp2m))m has infinitely many signs changes. Moreover, we prove similar (partly conditional) results for arbi...
متن کاملFourier Coefficients of Half - Integral Weight Modular Forms modulo `
S. Chowla conjectured that every prime p has the property that there are infinitely many imaginary quadratic fields whose class number is not a multiple of p. Gauss’ genus theory guarantees the existence of infinitely many such fields when p = 2, and the work of Davenport and Heilbronn [D-H] suffices for the prime p = 3. In addition, the DavenportHeilbronn result demonstrates that a positive pr...
متن کاملCoefficients of Half-integral Weight Modular Forms
In this paper we study the distribution of the coefficients a(n) of half integral weight modular forms modulo odd integers M . As a consequence we obtain improvements of indivisibility results for the central critical values of quadratic twists of L-functions associated with integral weight newforms established in [O-S]. Moreover, we find a simple criterion for proving cases of Newman’s conject...
متن کاملHecke Structure of Spaces of Half-integral Weight Cusp Forms
We investigate the connection between integral weight and half-integral weight modular forms. Building on results of Ueda 14], we obtain structure theorems for spaces of half-integral weight cusp forms S k=2 (4N;) where k and N are odd nonnegative integers with k 3, and is an even quadratic Dirichlet character modulo 4N. We give complete results in the case where N is a power of a single prime,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2012
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s179304211250042x